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OSCILLATIONS OF AN IDEAL LIQUID ACTED UPON
BY SURFACE-TENSION FORCES. CASE OF A DOUBLY
CONNECTED FREE SURFACE

V. R. Orel UDC 532.593

Many articles have appeared on the problems of small oscillations of an ideal liquid acted upon
by surface-tension forces. Oscillations of a liquid with a single free surface are treated in {1,
2]. Oscillations of an arbitrary number of immiscible liquids bounded by equilibrium surfaces
on which only zero volume oscillations are assumed possible are investigated in [3]. We con-
sider below the problem of the oscillations of an ideal liquid with two free surfaces on each of
which nonzero volume disturbances are kinematically possible, The disturbances satisfy the
condition of constant total volume. A method of solution is presented. The problem of axisym-~
metric oscillations of a liquid sphere in contact with the periphery of a circular opening is con-
sidered neglecting gravity. The first two eigenfrequencies and oscillatory modes are found.

§1. Supposeacertainvolume Q of an ideal liquid bounded by solid walls of a container 8 and two free
surfaces Z; and 3, (Fig. 1) is in a state of stable equilibrium; p is the density of the liguid, and oyand o,are
the surface tensions. The external field of body forces has the potential II.

We consider small oscillations of the liquid about the equilibrium position. We denote by n;(¢) the
normal to the undisturbed surface Z; (i=1, 2} at the point £ directed outward from the region Q, and by u; (¢, t)
a small displacement along nj at time t =0, We assume that the displacement uj(¢, t) is a twice continuously
differentiable function of the parameter £(€Z;). We denote by D; the set of such functions. Let D=D; XD, be
the space of all pairs of functions {u,, u,f where uj € Di. We usethe vector notation u ={ uy, uz} for the ele-
ments of the set D, We define the scalar product in D (u,v <D)

(u, v) == D ugd S b wed X
< N

Py Y

We introduce the displacement potential $(q, t}, g ¢ todescribe small oscillations of an ideal liguid [4].
For any t =0 the potential ® is a solution of the problem

AD == U, e () {1.1)
The necessary condition for the solvability of the inner Neumann problem (1.1) is the conservation of
volume [5]

(4w = _i’ 0, d Xy~ }I\“ X,y =0, (1.2)

-1 -
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We denote by D, the subspace of the space D which contains the elements u satisfying Eq. (1.2). It is
known [5] that for every u& Dy problem (1.1) has a solution ¢ which is unique to within an arbitrary function
of the time f(t). We set ¥ (§, ) =@, Ajear; (i=1, 2). It can be shown {1-3] that a matrix of linear operators
=[lGig!l @i, k=1,2) exists connecting an arbitrary element u of D, with the corresponding vector ¥ ={¥,, ¥,}:

¥ = Gu +fl. (1.3)

Using the properties of harmonic functions [5] it can be established that the operator G is symmetric
and positive in the space Dg; this means that ( 0)

(Gu, u) >0, u € D,. (1.4
We consider the matrix differential operator A= |) A'5ik” (i, k=1, 2) and D,

A; U = Gi( Ai + z(g))uz(g t)a EE iy Uy ED (1-5)
Here 4 is the Laplacian operator (6] on the surface %, and the function 7;(£) is given by the expression

[7)
w (@) =5 G —4HIO + 2K, @),

A

where Hi(g) is the mean curvature and Kj(£) is the Gaussian curvature [6] at the given point {€Z;.

Let Lj be the line of intersection of the surfaces Z; and 8. The kinematic slipping condition for the dis-
placement u(£, t) on L; has the form (1, 7]
' duiide; + iE)u; =0, § € L; (i = 1, 2). (1.6)
Here e; is a unit vector along the outward normal to the line L; drawn tangent to the surface Z; at the point §;
the function x (¢} is given by the expression (1, 7]
%:(8) = Txy(E) cos y; — ny(E)Vsin y; (sin y; % V),

where Y5 is the contact angle, %;(£)}is the curvature of 2 normal cross section of the free surface ¥; along
the direction ej; n;{£) is the similarly defined curvature of a normal cross section of the wetted surface S
at point ¢é€1; (i=1, 2).

Let Dx be the set of functlons u; from D; whlch satisfies the conditions (1.6}, It can be shown [8] that
the operators Ay (1.5) are symmetrlc on the sets DX (i=1, 2). Therefore, the matrix operator A is sym-
metric on DyX X DZX We set Wy =D, 'J (DX x D,X). Since the volume Q is in stable equilibrium, taking account
of the form of the second variation of the potential energy of the system of two surfaces I, and %, {9] we ob-
tain (w=0)

(All, u) > 0, u < Wo- (1.7)

We write down the linearized dynamic conditions satisfied by the values ¥, and ¥, of the displacement
potential ® on the free surfaces [1, 2, 4} (k=1, 2)

—p(@TFR/OR)E, 1) = ApuylE, &) + (1), E € e (1.8

Assuming everywhere a time dependence of the form exp(iwt) and using (1.3), we write (1.8) in the form
(f =const)

02pGu = Au - fl,
from which we obtain by using (1.2), (1.4), and (1.7)
o? = {(du, u)ip(Gu, W(>0), u € W, (1.9)

Following [8] we consider the chain of minimization problems

350



2 (Adu,w) (1,10)
AR IR A

to find the eigenfrequencies w; and the oscillatory modes zj of the volume Q of an ideal liquid, where Wj-1 Gj=2,
3, ... is a subspace of space W; orthogonal to the vectors { Zigy ooy Zj-1} , known from the solution of the preced-
ing problems, on which the successive minima{c_c%, vees 0«‘]2_1} of Eq. (1.10) are reached.

§ 2. We indicate one possibleway of constructing and solving the sequence of problems (1.10), We denote
by @y, ij the eigenfunctions of the cperators Ay, A, on the sets Dix s D%(, and by vy, 5 k, j=1, 2,...} the cor-
responding eigenvalues

A0y = Vi Qs G = D}, At = wip;, ¥ Di. (2.1)

Since each operator A. is symmetric on Dix [8] the eigenvalues vy, uy (k=1, 2,...) are real, and the sys-
tems of functions {gok}, {zpk} are orthogonal on the corresponding sz . Without loss of generality we assumethat
the systems {o k} , {l/) k} are normalized and the sets of eigenvalues{ v k} s {y k} are arrangedinascending order.

Let N be a positive integer. We consider the finite-dimensional subspace WON of the space Wy(Dy U (Df‘x
J
D))) suchthat every element u€W,N has the form

Pd

[ al
{ug. uy} = lk.:-iak(fh§k.}1 bh¢k}-

By definition, the elements of the set WyN satisfy the conservation of volume (1.2)

~ A Ny 2N
(w, )= X~ a, \ Gpd 3~ ¥ bkﬂ.\rkdii = X 2u0,=0, (2.2)
h=1 pi R=1 =, =1
where
Uap—y = Qi Gop = bk (A - J.. 2. ey -V);
wy— = | ud Ty w0y = é,f $pd S, (2.3)

Knowing the set of numbers (2.3) {wk} we can construct a fundamental set of solutions YN={y,, Y25 eoe
yn} of Eq. (2.2). The vectors yk entering Yy are 2N dimensional, and their number n is determined by the
number of nonzero coefficients wy (2.3) and the kinematic restrictions imposed on the oscillations of the vol-
ume Q. It can be shown that 2(N—1) =n=2N, In particular, if displacements u; with nonzero volumes are ad-
missible on both surfaces, and among the numbers wy, at least two are different from zero, n=2N-1,

To each vector yi(EYy) there corresponds a definite element vy of the space WON k=1, 2,...n),

& S_— -
Vp = 1;_1 Yai—1,6C s - y:i,klhl- (2.4)

The vectors vy form a basis in WON, and therefore every element uEWON has the form

n
u=>ev;.
i=1

(2.5)

We denote by & the solution of problem (1.1) with boundary conditions given by the vector vy (2.4). On
the free surface Zj(i=1, 2) the displacement potential &, goes over into the function ¥, k in which the vectors
Vi andvlrkz{\lli’k, ¥y, & (1=k=n) are connected by the relation (1.3).

Substituting (2.5) into (1.9), we obtain

n n 1—1

T n
oF = S .\_‘ A;1CiCy {.0 2 gjicic s (2.6)
i=1h=1 =11=1
where
X ~
Ay =dp; = 12‘1 VY1, Y2i—t1,n = 121 Wlar,iYai ks (2.7
N T 3 N 2 N
gir =Cp; = zgx Yor—1,i J Vg d 2, +l§vy21,i\j lFQ,k‘Pldzz}'

L
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Both quadratic forms are positive-definite and, therefore [10], there is a linear transformation of the
variables { ¢y, ¢y, vouy CpF: '

C; == Z Uij.Zj, (2.8)
i=1
which gives Eq. (2.6) the form
n ” no, -1
0= 2 Akx;[p Zx} (2.9)
k=1 i=1

Here the {\ k} are arranged in order of increasing‘ roots of the equation [10]
det [fa;z — Agull = O.

Solving (1.10), the problem of minimizing Eq. (2.9), we obtain approximate valués of the frequencies
Wi, n and the modes Zj,  of the natural vibrations of the volume Q:

n
i N ;
oj,n= VA zjn = _A‘.Jiuijviv i=42,...,n
=

§3. Letus consideravolume Q of an ideal liquid in the form of a sphere of radius R and neglect gravity
(I=0). We assume that the liquid sphere is in contact with the periphery of a circular opening of radius r <R
without changing its shape. The circle of contact divides the surface of the sphere into two parts I, %, (Fig.
2). We denote the half-angle of the spherical segment %; (i=1,2) by B;. We set By=p (Fig. 2) and then By=
TR,

By assuming that the wettability of the periphery of the opening is complete, the boundary conditions
(1.6) have the form

ul‘Lx = u2lL: = 0'

We assume that the surface tensions on £, and %, are the same (0; =0, =0). Then it can be shown [9]
that for all values of 3 different from 7/2 the inequality (1.7) is satisfied and the volume Q is in stable equi-
librium,

On each segment 3 (i=1, 2) we introduce its 'own curvilinear coordinate system {(p, s}, where ¢ is the
angle of rotation about the axis of symmetry, and s is the arc length measured along the meridian from the
pole of the segment (s =0) to the edge of the opening (s =Rp;j). We consider only axisymmetric oscillations
of the liquid sphere Q. The problem of determining the eigenvalues and eigenfunctions of the operator A;
(1.5) on the set D takes the form [9]

—(o/R2)(d?u/do® + ctg adu/de + 2u) = Ay, 0 << a << B, (3.1)
|O)|< oo, u(Bs) =0, i = 1,2.
The eigenfunctions of problems (3.1) are [11] Legendre functions of the first kind Pyk(cos o), Prklcos a)
k=1, 2, ...), where y; and 7y are successive roots of the equations
Pycos ;) = 0; Py(cos By) = 0. » (3.2)

To simplify the calculations we set p, ¢, and R=1, which corresponds to the transformation to the di-
mensionless parameter w? in (2.6). It can be shown that the dimensional frequency of oscillations is related
to the dimensionless frequency by the expression -

w¥p, o, R) = (c/pRY)w’(1, 1, 1). (3.3)
The eigenvalues vk and py of the operators A; and A, are given by the expressions [11}
Ve = Talve + 1) — 25 pr = Ml +1) — 2. (3.4

The normalized eigenfunctions ¢k(a@) and ¥y (0 of the operators A and A, have the form

@1 (@) = Py, (cosa) Nz ', @ (0,B1)
Py (@) = Pay(cos ) Mz !, a=(0,B2)s

where
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by 8
Ni = | (Pry(cos ) sinader; Mj = j (Pr (c0s @))?sin qda.
b 3

We obtain the volumes wy (2.3) by integrating the functions ¢y and ;. over the surface of a sphere of

unit radius,
B Fa
=27 ( o, (o) sinada; w,, = 20 g Py (o) sin ada, (3.5)
0 b

E=1,2,....

Calculations [9] showed that the numbers wy, were different from zero for any half-angles of the spher-
ical segments, and therefore

( Wy Py — Woj_ 1') . .
VZJ'—1=I 7 2"]], ==; —%]» 1<i<N; (3.6)
U Wajg T Wy l/wzj—1 T wa; f
Vo = WoiPaj+1 . — w25+1\b]' , i < ]< N—1
T Wit el Vel ediy
N

can be taken as the basis vectors vy (2.4) of the space W,
The fundamental system of solutions of Eq. (2.2) corresponding to the vectors (3.6) consists of the ele-
ments
iO, i<k o ikt
== 0wy (ud +win) ™ =k 3.7)
(— D'w (wh +wip) ™%, i=k 1,
i=1,2.,2N; k=1,., 2N — 1.

Yin

By substituting into (2.7) and using (3.3) and (3.7) we obtain for the coefficients a1l =1, k=2N-1)

N .
Tip = Gy = 270 Ei (V1 Yoi, i Yoy g T Wiy s Yoy p). 3.8)

In order to determine the elements of the matrix gy (2.7) we construct solutions of problem (1.1) with
boundary conditions given by the vectors (3.6). Let 6 be the angle measured along the meridian of the sphere
(R=1) from the pole of the segment = ; (9 =0) to the pole of the segment Z4 (f =7), Using the known [5] solu-
tion of the inner Neumann problem (1.1) for a sphere we obtain an expression for the displacement potential
&y on the surface:

#(1:0) = X (14 1/21) Py(cos 0) | £, (@) Py (cos o) sin ade, (3.9)
l=={ [} i
k=1,2,...,2N—1,

where the P; (cos @) are Legendre polynomials [5, 11], and fx(0) is the disturbance of the surface of sphere
Q given by the vector vy (3.6)

b 1(6), 8 € (0, B), 10
fk(e) {Uy, k(q _ e 8 = - (B (3¢1 )

We introduce the set of numbers (=1, 2, ..., N; [ =1, 2,...)

(@) Py (cos o) sin ada;
(3.11)

ey
9
S‘ Y; (@) P, (cos o) sin ado.
Noting that

. I
g, =(— 1)t \ Y; (v — o) Py (cos o) sin adx,
’ n-g
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and using for vi in (3,10) the expression (2.4), Eq. (3.9) can be written in the form k=1, 2,..., 2N—1)
Dy (1,0) = X (14 1/20) Vs P, (cos ),
=1

where

.
. — ; 4l !
Vi = ]‘\:1 (Yoi— P50+ (— DY 185,11 -

Hence, by evaluating the integrals for the coefficients 8ik in Eq. (2.7) over the surface of a unit sphere we ob~-
tain (i, k=1, 2,..., 2N~1)

8y = 8 = 27 z"§1 (A+1720VaVi. (3.12)

Let us fix a certain half-angle 8(>7 /2) of the spherical segment I, (Fig. 2). Specifying the number N
of functions ¢, ¥ x on the surfaces Z;, 3, and performing the necessary calculations by using the formulas
given above, we find the coefficients a;) (3.8) and gji (3.12). By minimizing (2.6) with n=2N~1 we obtain the
approximate values of the dimensionless frequencies @, N and the corresponding axisymmetric oscillatory
modes zj, N of sphere Q. The transformation to dimensional frequencies is given by (3.3).

The calculations were performed by computer. Tabulated values [9] of the roots of Egs. (3.2) and vol-
umes (3.5) were used, A good approximation of the first two oscillatory modes (for 90°<£<150°) was obtained
by taking N=4, The quantities gj,1 and P, 1 (3.11) (=1, 2, 3, 4; 1 =1, 2,..., m) were calculated by numerical
integration with a check on aceuracy. The number m of Legendre polynomials taken into account in (3.12)
varied from 10 to 50 as 8 was increased. The method of rotations was used to minimize Eq. (2.6) to the form
(2.8) and to calculate the roots of Eq. (2.9).

Figure 3 shows the dependence of the first two frequencies wy and w, of axisymmetric natural oscillations
of liquid sphere Q on the angle of fixation 8<(90, 150°). .

Figure 4a, b, ¢ shows the natural oscillatory modes z,, %, of sphere Q for angles 8 =90, 120, and 145°,
respectively. Calculations showed that the first mode of axisymmetric oscillations of the sphere has the same
sign on the smaller segment X, for all values of the angle . On the larger segment I, the first mode z, has
the same sign for §=(90°, 115°); for g >115° there is one change of sign. The second mode %, of natural oscil-
lations for 8 <108° changes sign once on the smaller segment, and for 8 >108° the second mode has the same
sign on %, (Fig. 4b, ¢). On segment Z; for =(90°, 139°) the second oscillatory mode changes sign once (Fig.
4a, b); for p >139° (Fig, 4c) the second mode changes sign twice.

In conclusion, the author thanks F. L. Chernous'ko for posing the problem and for his attentiontothe work,
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DYNAMICS OF A DIVERGING LIQUID MENISCUS IN
A CAPILLARY, TAKING INTO ACCOUNT THE SPECIFIC
PROPERTIES OF THIN FILMS

B. V. Zheleznyi UDC 532.68

The theory of the diverging meniscus of a Newtonian liquid for capillary flow conditions at low
meniscus velocities,in which the thermodynamic and rheological features of thin wetting films
appear, is set forth, Two cases are considered: thermodynamically stable wetting film with
high viscosity in the boundary layer on a completely wetted solid surface and a thermodynam-
ically unstable film on a conditionally wetted solid surface exhibiting a liquid slip effect,

The relation between the thickness h* of the film left on the walls of the cylindrical capillary behind a
diverging liquid meniscus and the rate v at which the meniscus travels is determined when studying the prop-
erties of wetting films in the capillary method {1}. Extrapolation of hx« (v) to zero velocity makes it possible
to find the thickness of equilibrium films with a meniscus in capillaries of various radii R andtothereby deter-
mine the basic thermodynamic characteristic of equilibrium wetting films — the wedging pressure isotherm,
Moreover, hy (v) provides information about the rheological properties of wetting films. A theory of the di~-
verging meniscus that would take into account the specific properties of thin films is necessary in order to
interpret this information and to correctly extrapolate h« (v) to zero velocity.

The dynamics of the diverging meniscus of a wetting liquid has been previously considered under the
assumption that the film deposited on a solid film surface exhibits the properties of a bulk liquid phase (the
viscosity coefficient 17, and coefficient of surface tension ¢ are given by tables) [2-4]. Various methods have
yielded the equation

odBh/dI® = Sng(L/R* — hy/h®), (1)

which describes steady flow in one direction in a flat film of a Newtonian liquid on a plane {(or circular cy-
lindrical) solid surface if flow occurs only due to capillary forces (capillary flow regime}, In Eq, (1) hx is the
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